Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of aryl allylic fluorides by direct electrophilic fluorination of alkenes

Hai-Qing Luo, Teck-Peng Loh*

Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore

ARTICLE INFO

ABSTRACT

Article history: Received 30 October 2008 Revised 22 December 2008 Accepted 13 January 2009 Available online 19 January 2009 Aryl allylic fluorides were synthesized in 47–83% yields by using Selectfluor as the electrophilic reagent in DMF. The outcome of this reaction may be explained by electronic effects while the reactivity was controlled by the stabilization effect of the aryl group on the benzylic cationic intermediates. © 2009 Elsevier Ltd. All rights reserved.

There has been significant interest in fluorinated organic compounds especially in the fields of medicine, pharmaceuticals and material science. Introduction of a fluorine atom into organic molecules produces profound effects on the biological activity, metabolism, solubility, hydrophobicity and bulk properties of organofluorine compounds.^{1,2} Therefore, much effort has been directed towards developing facile synthetic methods to introduce fluorine into useful intermediates or desired substrates.

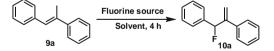
In connection with our interest in the synthesis of fluorinated steroids (**1**, Scheme 1), we were interested in developing a method to obtain aryl allylic fluoride **4** (Scheme 1). Although there are methods for the synthesis of aryl allylic fluorides,^{3,4} most of these fluorination reactions used allyltrimethylsilanes as starting materi-

Scheme 1. Designed route to synthesize fluorinated steroids.

* Corresponding author. Tel.: +65 6316 8899; fax: +65 6791 1961. *E-mail address:* teckpeng@ntu.edu.sg (T.-P. Loh).

0040-4039/\$ - see front matter \odot 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.01.052

als. Previously, aryl alkenes have been shown to react with electrophilic fluorinating reagents. In these reactions, solvent systems were used as the nucleophiles to capture the fluorocarbocationic intermediates.⁵ In our synthesis, we required a considerably more direct and efficient entry to aryl allylic fluorides using alkenes as starting materials.


In this Letter, we disclose our recent observations on electrophilic fluorination using aryl alkenes as starting materials for car-

F F $S_1:$ Selectfluor $S_2: N-fluorobenzene$ sulfonimide (NFSi)

Figure 1. Sources of fluorine.

Table 1

Reaction of α -methylstilbene (**9a**) with fluorine sources^a

Entry	Solvent	Fluorine Source	Reaction temperature (°C)	Conversion	Yield ^b (%)
1	DCM	NFSI	rt	No reaction	
2	THF	NFSI	rt	No reaction	
3	CH3CN	NFSI	75	No reaction	
4	DMSO	NFSI	75	No reaction	
5	DMF	NFSI	75	No reaction	
6	CH ₃ CN/H ₂ O 10:1	NFSI	75	No reaction	
7	CH ₃ CN/H ₂ O 10:1	Selectfluor	rt	>98%	8
8	CH₃CN	Selectfluor	rt	>98%	12
9	DMSO	Selectfluor	75	No reaction	
10	DMF	Selectfluor	75	>95%	83

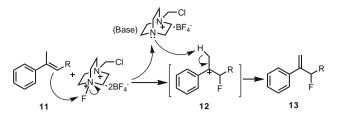
 a Conditions: $\alpha\text{-Methylstilbene}$ (0.50 mmol), fluorine source (0.525 mmol), reaction time 4 h.

^b Isolated yield.

Table 2

Fluorination of various aryl alkenes with Selectfluor in DMF^a

Entry Aryl alkene Reaction time (h) Reaction temperature (°C) Main product (%) 1 $\begin{array}{cccccccccccccccccccccccccccccccccccc$		9a-m			10a-m		
1 $\begin{array}{cccccccccccccccccccccccccccccccccccc$	Entry	Aryl alkene	Reaction time (h)	Reaction temperature (°C)		Yield ^b (%)	
$\mathbf{9b}$ $\mathbf{10b}^{+}$ 3 $\begin{array}{c} \downarrow \\ \mathbf{9c} \end{array}$ 475 $\begin{array}{c} \downarrow \\ \mathbf{10c} \end{array}$ $\mathbf{67^{c}}$ 4 $\begin{array}{c} \downarrow \\ \mathbf{9d} \end{array}$ 475 $\begin{array}{c} \downarrow \\ \mathbf{10d} \end{array}$ 82 5 $\begin{array}{c} \downarrow \\ \mathbf{9d} \end{array}$ 475 $\begin{array}{c} \downarrow \\ \mathbf{10d} \end{array}$ 82 6 $\begin{array}{c} \downarrow \\ \mathbf{9e} \end{array}$ 475 $\begin{array}{c} \downarrow \\ \mathbf{10d} \end{array}$ 80 6 $\begin{array}{c} \downarrow \\ \mathbf{9f} \end{array}$ 645 $\begin{array}{c} \downarrow \\ \mathbf{10f} \end{array}$ 59 7 $\begin{array}{c} \downarrow \\ \mathbf{9g} \end{array}$ 475 $\begin{array}{c} \downarrow \\ \mathbf{0f} \end{array}$ 81 8 $\begin{array}{c} \downarrow \\ \mathbf{9h} \end{array}$ 645 $\begin{array}{c} \downarrow \\ \mathbf{10h} \end{array}$ 68 9 $\begin{array}{c} \downarrow \\ \mathbf{9i} \end{array}$ 5 70 $\begin{array}{c} \downarrow \\ \mathbf{0i} \end{array}$ 78 $\begin{array}{c} \swarrow \\ \mathbf{9i} \end{array}$ $\begin{array}{c} \downarrow \\ \mathbf{9i} \end{array}$ 76 $\begin{array}{c} \checkmark \\ \mathbf{0i} \end{array}$ $\begin{array}{c} \downarrow \\ 76 \end{array}$ 9 $\begin{array}{c} \downarrow \\ \mathbf{9i} \end{array}$ 5 70 $\begin{array}{c} \downarrow \\ \mathbf{0i} \end{array}$ $\begin{array}{c} \blacksquare \\ 76 \end{array}$ 9 $\begin{array}{c} \downarrow \\ \mathbf{9i} \end{array}$ 5 70 $\begin{array}{c} \downarrow \\ \mathbf{0i} \end{array}$ $\begin{array}{c} \blacksquare \\ 76 \end{array}$ 9 $\begin{array}{c} \downarrow \\ \mathbf{9i} \end{array}$ 75 70 $\begin{array}{c} \downarrow \\ 76 \end{array}$ 78 9 $\begin{array}{c} \downarrow \\ \mathbf{9i} \end{array}$ 76 76 76	1		4	75	F _{10a}	83	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	(آ) 9b	4	75	10b F	65°	
4 $\bigcup_{\mathbf{9d}}$ 4 75 $\bigcup_{\mathbf{10d}}$ 82 5 $\bigcup_{\mathbf{9e}}$ 4 75 $\bigcup_{\mathbf{10d}}$ F 80 6 $\bigcup_{\mathbf{9e}}$ 6 45 $\bigcup_{\mathbf{10e}}$ F 59 7 $\bigcup_{\mathbf{9g}}$ 4 75 $\bigcup_{\mathbf{10f}}$ F 59 7 $\bigcup_{\mathbf{9g}}$ 4 75 $\bigcup_{\mathbf{10f}}$ F 81 8 $\bigcup_{\mathbf{9h}}$ 6 45 $\bigcup_{\mathbf{10h}}$ F 68 9 $\bigcup_{\mathbf{9h}}$ Bn 5 70 $\bigcup_{\mathbf{10i}}$ Bn 78 $\bigcup_{\mathbf{10i}}$ 78	3	⊖ 9c	4	75	F 10c	67 ^c	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	et de la constante de la const	4	75	\mathbb{C}	82	
9f 10f 7 0 $9g$ 4 75 0 $10f$ 8 0 $10g$ 8 0 $10g$ 9 0 $10g$ 9 0 0 0 0 0 0 0 0 0 0	5	e 9e	4	75	F 10e	80	
7 0 $9g$ 4 75 0 $10g$ 81 8 0 $10g$ 81 8 0 0 $10g$ 81 8 0 0 0 0 0 0 0 0 0 0	6	€¥ 9f	6	45	I I I I I I I I I I I I I I I I I I I	59	
9h 10h $9 \downarrow Bn$ 5 70 $0 \downarrow Bn$ 78 9i 10i	7	~₀€€€ 9g	4	75		81	
9 5 70 F 78 9i 10i	8	U 9h	6	45	F 10h	68	
10 LABN 5 70 LABN 71	9	\mathbb{C}	5	70	(C) F	78	
9j	10	$\sim \sim$	5	70		71	
$11 \qquad \bigcirc - \bigcirc \qquad 6 \qquad 40 \qquad \qquad \bigcirc - \bigcirc \qquad 47^c \qquad \qquad$	11		6	40	10k ^F	47 ^c	
12 4 75 No reaction	12	€ 9m	4	75	No reaction		


^a Al reactions were performed in DMF under an N₂ atmosphere.

^b Isolated yield.

^c The isolated yield was low because the product is volatile and decomposes.

bon-fluorine bond formation, which provides a much more efficient way to synthesize aryl allylic fluorides.

Our initial studies focused on screening fluorine sources such as Selectfluor^{6–8} (S_1 , Fig. 1) and *N*-fluorobenzenesulfonimide (NFSi)^{9,10} (S₂, Fig. 1) for the conversion of **9a** into **10a**. As shown in Table 1, no reaction was observed when NFSi was used as the fluorine source. However, the reaction proceeded smoothly to afford the desired product 10a when Selectfluor was used as the fluorine source (entries 7, 8 and 10). The best conditions involved reaction in *N*,*N*-dimethylformamide (DMF) for 4 h at 75 °C (entry 10). In this reaction, dry DMF was required, as the yield of the

Scheme 2. Proposed fluorination mechanism.

product decreased substantially in the presence of water, with formation of a byproduct produced by capture of a fluorocarbocationic intermediate by water.⁵

Using the optimized conditions, we explored the scope of this reaction with various aryl alkenes. The results are summarized in Table 2. In all cases, the desired aryl allylic fluorides were obtained in moderate to good yields (Table 2, entries 1-11). Interestingly, a substrate without a 1-methyl group also gave the desired product **10k** in 47% yield at lower temperature. The tetra-substituted aryl alkenes (Table 2, entries 6 and 8) reacted at a lower temperature to afford aryl allylic fluorides as the main products.³ Carbocation stabilization of the phenyl group is essential for clean reactions. No reaction was detected with allylic alkene 9m.

The following mechanism is proposed to account for the observed fluorinated products. The fluorocarbocationic intermediate 12 (Scheme 2) was generated upon electrophilic addition of Selectfluor to the alkene 11, which underwent loss of a proton to produce the aryl allylic fluoride 13.

In summary, this Letter describes a direct entry into aryl allylic fluorides using simple alkenes. The application of this reaction to the synthesis of other fluorinated compounds is in progress.

Acknowledgements

We gratefully acknowledge Nanyang Technological University and the Singapore Ministry of Education, Academic Research Fund Tier 2 (No. T206B1221 and T207B1220RS), for funding this research.

Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2009.01.052.

References and notes

- 1. For an important early review on the subject, see: (a) Welch, J. T. Tetrahedron **1987**, 43, 3123–3197; (b) Special Issue on 'Fluorine in the Life Sciences', *ChemBioChem* **2004**, 5, 557–726.; (c) Bégué, J. P.; Bonnet-Delphon, D. *Bioorganic* and Medicinal Chemistry of Fluorine; John Wiley & Sons, 2008.
- 2 (a) Loh, T. P.; Li, X. R. Angew. Chem., Int. Ed. 1997, 36, 980–982; (b) Shimizu, M.; Hiyama, T. *Angew. Chem., Int. Ed.* **2005**, *44*, 214–231. Kirihara, M.; Kakuda, H.; Tsunooka, M.; Shimajiri, A.; Takuwa, T.; Hatano, A.
- З Tetrahedron Lett. 2003, 44, 8513-8518.
- (a) Greedy, B.; Paris, J. M.; Vidal, T.; Gouverneur, V. Angew. Chem., Int. Ed. 2003, 42, 3291-3294; (b) Thibaudeaur, S.; Gouverneur, V. Org. Lett. 2003, 5, 4891-4893; (c) Teare, H.; Robins, E. G.; Årstad, E.; Luthra, S. K.; Gouverneur, V. Chem. Commun. 2007, 2330-2332; (d) Yamanaka, M.; Arisawa, M.; Nishida, A.; Nakagawa, M. Tetrahedron Lett. 2002, 43, 2403-2406; (e) Pacheco, M. C.; Purser, S.; Gouverneur, V. Chem. Rev. 2008, 108, 1943-1981; (f) Roig, R.; Percy, J. M. Sci. Synth. 2005, 34, 319-340.
- (a) Lal, G. S. J. Org. Chem. 1993, 58, 2791-2796; (b) Stavber, S.; Sotler, T.; Zupan, M. Tetrahedron Lett. 1994, 35, 1105-1108; (c) Zhou, C.; Li, J.; Fu, C.; Ma, S. Org. Lett. 2008, 10, 581-583; (d) Zupan, M.; Iskra, J.; Stavber, S. J. Org. Chem. 1995, 60, 259-260; (e) Banks, R. E. J. Fluorine Chem. 1998, 87, 1-17; (f) Stavber, S.; Pecan, T. S.; Papez, M.; Zupan, M. J. Chem. Soc., Chem. Commun. 1996, 2247-2248
- 6. (a) Barton, D. H. R.; Godinho, L. S.; Hesse, R. H.; Pechet, M. M. Chem. Commun. 1968, 804-806; (b) Schack, C. J.; Christe, K. O. Inorg. Chem. 1979, 18, 2619-2620; (c) Tius, M. A. Tetrahedron 1995, 51, 6605-6634; (d) Schmutzler, R.

Angew. Chem., Int. Ed. 1968, 7, 440-455; (e) Rozen, S. Chem. Rev. 1996, 96, 1717-1736; (f) Singh, R. P.; Shreeve, J. M. Acc. Chem. Res. 2004, 37, 31–44.
7. (a) Umemoto, T.; Kawada, K.; Tomita, K. Tetrahedron Lett. 1986, 27, 4465–4468;

- (b) Umemoto, T.; Fukami, S.; Tomizawa, G.; Harasawa, K.; Kawada, K.; Tomita, K. J. Am. Chem. Soc. 1990, 112, 8563-8575; (c) Resnati, G.; DesMarteau, D. D. J. Org. Chem. 1991, 56, 4925-4929.
- 8. (a) Banks, R. E. (Air Products and Chemicals, Inc., USA). U.S. Patent 5,086,178, 1992; Chem. Abstr. 1992, 116, 194355.; (b) Banks, R. E.; Lawrence, N. J.;

Popplewell, A. L. Synlett **1994**, 831–832; (c) Banks, R. E.; Besheesh, M. K.; Mohialdin-Khaffaf, S. N.; Sharif, I. J. Chem. Soc., Perkin Trans. 1 **1996**, 2069–2076; (d) Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. Chem., Int. Ed. 2005, 44, 192-212; (e) Stavber, S.; Zupan, M. Chem. Commun. **1994**, 149–150.

- Differing, E.; Ofner, H. Synlett **1991**, 187–189.
 For an investigation of the reactivity of NFSi, see: Antelo, J. M.; Crugeiras, J.; Leis, J. R.; Ríos, A. J. Chem. Soc., Perkin Trans. 2 2000, 2071-2076.